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Given a family c# of linear continuous mappings of a topological vector space X
into another topological vector space Y, the set S.ot' of singularities for sf is defined
as the set of all x in X for which {A (x): A E sf} is an unbounded set in Y. The
following general principle of condensation of singularities for nonequicontinuous
families sf is obtained: If either X is Hausdorff barrelled and Y is seminormable,
or X is Hausdorff ultrabarrelled and Y is locally bounded, then Scot' is an uncoun
tably infinite dense G~-set in X. A principle of double condensation of singularities
in Banach spaces is also obtained. These principles are applied to prove the dense
unbounded divergence of Fourier series, biorthogonal systems, Lagrange inter
polation processes and some quadrature formulas.

1. INTRODUCTION

It is well known that many important approximation methods such as
Fourier series, Lagrange interpolation processes, some quadrature formulas,
etc., are unboundedly divergent for some continuous functions called
"singular functions" for the method considered. The existence of such
functions is usually derived from the Banach-Steinhaus boundedness prin
ciple. But the latter tells us nothing about the cardinality and density
properties of singular functions in the space of continuous functions. It is the
purpose of this paper to describe the topological structure of the set of all
singularities for unboundedly divergent approximation methods.

With a linear approximation method we associate an appropriate family
.:4' of linear continuous mappings of a topological vector space X into
another topological vector space Y. The occurrence of an unbounded
divergence phenomenon translates into the nonemptiness of the set of
singularities for .:4', Le., the set Sot' of all x in X for which {A (x): A E.:4'} is
an unbounded set in Y. Banach and Steinhaus [1] proved the following
remarkable result, called by them the principle of condensation of
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singularities: If X and Yare Banach spaces and s1' is not uniformly
bounded, then the set S", is dense in X and its complement in X is meagre
(i.e., of first category) in X. When X is a Baire space, an extension of this
principle has been obtained by Bourbaki [3].

In Section 2 we recall some needed notions and results. In Sections 3 and
4 we prove and comment the following general principle of condensation of
singularities for nonequicontinuous families s1': If either X is Hausdorff
barrelled and Y is seminormable, or X is Hausdorff ultrabarrelled and Y is
locally bounded, then S", is an uncountably infinite dense Gh-set in X. The
unbounded divergence phenomenon for Fourier series emphasized by Rudin
[14] both in the space of functions and in the interval of their definition
leads us to a principle of double condensation of singularities for one
parameter families of continuous (not necessarily linear) mappings between
Banach spaces (Section 5). In Sections 6-9 we apply these principles to
prove the dense unbounded divergence of Fourier series, biorthogonal
systems, Lagrange interpolation processes and some quadrature formulas.

2. PRELIMINARIES

We recall here some needed notions and results. Let T be a topological
space and S a subset of T. We say that S is a Gh-set, a Gho-set, or a meagre
set in T if S can be written as an intersection of a countable family of open
sets in T, as a union of a countable family of Gh-sets in T, or as a union of a
countable family of nowhere dense sets in T, respectively. We say that S is
superdense in T if S is an uncountably infinite dense and Gh-set in T. When
each nonvoid open subset of T is nonmeagre in T, then T is said to be a
Baire space.

Denote by K either the field R of real numbers or the field C of complex
numbers, endowed with the usual topology. Let X be a topological vector
space (TVS for short) over K. (Notice that X is a Baire space if and only if
X is a nonmeagre set in X.) A subset M of X is said to be bounded if for
each neighbourhood V of 0 (the origin of X) there exists a scalar). > 0 such
that Me). V. A TVS X is said to be locally bounded if there is a bounded
neighbourhood of 0 in X. A locally convex space (LCS for short) X over K
is said to be a barrelled space if each absorbing absolutely convex and
closed subset of X is a neighbourhood of 0 in X. Any Baire LCS, hence any
complete semimetrizable LCS, is a barrelled space. Notice that there exist
noncomplete normed spaces that are Baire spaces (cf. 16. Exercise 6.23\).
The following useful characterization of barrelled spaces 113. Theorem 4\
leads to the definition of a class of TVS (not necessarily LCS) having similar
properties with barrelled ones.
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2.1. PROPOSITION. Let X be a LCS with topology g-. Then X is barrelled
if and only if the only locally convex topologies on X, with bases of g--closed
neighbourhoods of 0, are those weaker than g-.

A TVS X with topology g- is said to be an ultrabarrelled space if the only
linear topologies on X, in which there exists a base of g--closed
neighbourhoods of 0, are those weaker than g-. It follows immediately that
an ultrabarrelled LCS is barrelled, but the converse may fail. Any Haire
TVS, hence any complete semimetrizable TVS, is an ultrabarrelled space.

Now, denote by X and Y two TVS over the same K, and by ~(O) and
]/~(O) the sets of neighbourhoods of 0 in X and in Y, respectively. Let
L(X, Y) be the vector space over K of all linear continuous mappings of X
into Y. If 1 is a family of bounded subsets of X, directed by inclusion c,
and ~, is the family of all sets of the form

B(M, V) = {A E L(X, Y): A (M) c V},

then there exists a unique linear topology on L(X, Y) for which ~, becomes
a neighbourhood base of 0 in TVS L(X, Y). This is called the 1-topology of
L(X, Y). When 1 consists either of all bounded or of all finite subsets of X,
then the 1-topology of L(X, Y) is called uniform topology and pointwise
topology, respectively. A subset of L(X, Y) is said to be 1-bounded if it is
bounded in the 1-topology of L(X, Y). A subset .sf of L(X, Y) is said to be
equicontinuous in L(X, Y) if for each V in ry(O) there exists a U in rx(O)
such that A E.sf entails A(U) c V. Any equicontinuous subset of L(X, Y) is
1-bounded with respect to every 1-topology of L(X, Y).

If .sf is a family of continuous mappings of a TVS X into a TVS Y, we
define the set of singularities for .sf as the set S", of all points x in X for
which {A(x): A E.sf} is an unbounded set in Y.

3. CONDENSATION OF SINGULARITIES IN BARRELLED
AND ULTRABARRELLED SPACES

The following theorem describes the topological structure of the set of
singularities for nonequicontinuous families of linear and continuous
mappings.

3.1. THEOREM. Let X and Y be two TVS over the same K, and let .sf be
a subset of L(X, Y) which is not equicontinuous in L(X, Y).

(i) Then S", contains the intersection of a countable family of open
and dense sets in X.

(ii) If either X is ultrabarrelled, or X is barrelled and Y is a LCS,
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then So/ contains a dense G[)-set in X; if, in addition, X is Hausdorff, then
S, contains a superdense set in X.

(iii) If either X is ultrabarrelled and Y is semimetrizable, or X is
barrelled and Y is a semimetrizable LCS, then S,.,' is a dense G[)a-set in X.

(iv) If either X is Hausdorff ultrabarrelled and Y is locally bounded,
or X is Hausdorff barrelled and Y is seminormable, then So/' is superdense in
X.

Proof Let V be a neighbourhood of 0 in Y with the help of which we
write that s/ is not equicontinuous. For each Win :;v-yeO) we define the set

S,.w by

where

SO/.w = n {Xn •w: n EN},

Xn.w=U {{xEX:A(x)EnW}:A Ed}.

(3.1 )

(3.2)

(i) Let W be a closed balanced neighbourhood of 0 in Y such that W +
We V. The sets X n•w in (3.2) are open in X for all n EN because the sets
{xEX:A(x)E nW} =A-I(y\nW) are open for all A Ed. Since n {Xn.w:
n E N} c So/' it remains to prove that each X n•w is dense in X. Supposing
the contrary, there exist no E N, XOE X and Uo E 'Yx(O) such that
(xo+ Uo)nXno.w =0. Then

for all x E Uo and all A Ed, which contradicts the choice of V. Hence, the
family {Xn •w: n E N} fulfills the requirements in (i).

(ii) First, we assume that X is ultrabarrelled. The family

'11/' = {W E ~~(O): W is closed balanced and We V}

is a neighbourhood base of 0 in Y. The sets So/'.w, WE 7r, defined in (3.1),
are G[)-sets and satisfy S'Y'.w c So/" To prove the first affirmation in (ii), it
suffices to show that there exists a Win 7r such that So/'.w be a dense set in
X.

Suppose the contrary. Then the set family

where X w = n{A -leW): A Ed},

has the properties:

(a) each X w is a balanced and absorbing set in X,
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(b) if X w and X w are in W, there exists an X w in W such that X w c
I 2 3 3

X W ,(lXW2 '

(c) if X w is in W, there exists an X w in W with X w + X w c X w .
I 2 2 2 I

Indeed, it is clear that X w , WE 'W', is balanced. Next, let WI E :Yy(O) be
a closed balanced set with WI + WI C W. Since the set So/.w, is not dense in
X (note that WI E W), there exist X oE X and UoE :Yx(O) such that
(xo + Uo)(I So/.w, = 0. To prove that X w is an absorbing set in X, let x be
in X. Choosing a A > 0 with Ax E Uo' the elements Xo and Xo+AX are not in
So/.w" hence there is an noEN so that Xo and Xo+AX are not in X no•w,.
Now, by definition (3.2) of X n w' we haveo. I

for all A E s1'. Therefore, no-lAx En {A -I(W): A E s1'} = X wand property
(a) holds.

Properties (b) and (c) hold with a W3 E 'W'such that W3 C WI (I W2 , and
with a W2 E 'W'such that W2 + W2 C WI' respectively.

Thus, by a well-known result (cf. [3, Chap. I, Sects. 1, 5, Remarque 2]),
there exists a unique linear topology g-' on X for which W becomes a
neighbourhood base of 0 in X. Since every X IV in W is a closed set in the
initial topology g- on X, and X is uItrabarrelled, the topology g-' is weaker
than g-, so that n{A- ' (W):AEs1'}=Xw is in 0(0) for all WE'W'.
Hence, A(Xw) C Wi::: V for a Win :Yy(O) and all A in s1', which contradicts
the choice of V.

When X is barrelled and Y is a LCS, the preceding argument holds if the
neighbourhood base 'W' is replaced by

{W E :Yy(O): W is closed absolutely convex and We V},

Proposition 2.1 is invoked, and the property (a) for W is replaced by

(a') each X w is absolutely convex and absorbing set in X.

If, in addition, X is Hausdorff then, by the choosing of V, there exists an X

in So/,w with X*" 0, where W is a neighbourhood of 0 in Y such that So/,w is
dense in X. It follows immediately that AX is in So/. w for all A >0, which
shows that the set So/.w is uncountably infinite. Hence, S",.w c S", and
S""w is a superdense set in X.

(iii) Suppose that either X is uItrabarrelled and Y is semimetrizable, or X
is barrelled and Y is a semimetrizable LCS. Then there exists a countable
base of closed balanced neighbourhoods Wi c V, i E N, of 0 in Y. If x E So/'
there exists an i E N such that for each n E N one can find an A E s1' with
A(x) E nWp hence x E S",.Wj' where S"'.Wj is defined by (3.1) and (3.2).
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Conversely, the argument in (ii) shows that S",,=U {S""",wj:iEN} is a
dense Gbu-set in X.

(iv) Finally, suppose that either X is Hausdorff ultrabarrelled and Y is
locally bounded, or X is Hausdorff barrelled and Y is seminormable. Then
there exists a closed balanced bounded neighbourhood Vo of 0 in Y. We shall
show that S"" = S"".vo' where S"".vo is defined by (3.1) and (3.2). To this
end, let x be in S"". Since the set {A(x): A E J1"} is not bounded in Y, there
exists a closed balanced neighbourhood W of 0 in Y such that for each a >0
there is an A in J1" with A(x) ft. aW. For the bounded set Vo we can take a
)., > 0 with Vo c ).,W. By the choosing of W, for each n EN there exists an
A E J1" with A(x) ft. n).,W, hence A(x) ft. nVo' This implies x E X n.vo for all
n E N, whence x E S"".vo' Now, from (ii) it follows that the set S"" = S"".vo
is superdense in X.

This completes the proof of the theorem.

4. EXAMPLES AND REMARKS

4.1. EXAMPLE. We shall show that the set U of all unbounded sequences
is superdense in the LCS 5 of all scalar sequences x = (Xl"'" X n , ... ), equipped
with the seminorms Pn(x) = max{lx11,..., Ixnl}, n E N.

To this end we introduce the vector space ZO of all scalar sequences x =
(XI'"'' x n , ... ) with at most a finite number of nonzero terms, endowed with
the norm IIxll = max{lx11,..., Ixnl, ... }. Notice that U coincides with the set S""
of singularities for the family J1" of linear continuous mappings An: 5 -+ /0,
n E N, given by

Since 5 is a complete metrizable LCS with the metric

00

p(x,y)= \' 2- n[xn-Ynl(I+lxn-Ynl)-1,-n=1

the above result follows from Theorem 3. 1(iv), as soon as we verify that J1"
is not equicontinuous in L(5, ZO). For V = {y E ZO: II Y II < I} and each W =
{x E 5:Pn(X) < r}, n E N, r> 0, we have en+1 = (0,...,0,1,0,... ) E W (1 is at
the (n + l)st place), but An+1(en+I)=en+l f/:. V, hence J1" is not equicon
tinuous.

4.2. Remark. Since the equicontinuous families in L(X, Y) are bounded
in the pointwise topology of L(X, Y), Theorem 3.1 (ii), contains the
Banach-Steinhaus boundedness principle both in Bourbaki's form [3,
Chap. III, Sect. 3, Theoreme 2, Corollaire] and in Robertson's form [13,
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Theorem 5 J: If either X is barrelled and Y is a LCS, or X is ultrabarrelled,
then every pointwisely bounded set in L(X, Y) is equicontinuous in L(X, Y).
On the other hand, if X is either a LCS or a TVS for which the conclusion of
Banach-Steinhaus boundedness principle holds with Y = K and with every
TVS Y, respectively, then X is necessarily barrelled in the first case, and
ultrabarrelled in the second case (cf. [6, Theorem 7.1.1(b)J; [IS, pp. 10-12]).
Consequently, the barrelled and ultrabarrelled spaces constitute the most
general framework in which a principle of condensation of singularities as
Theorem 3.1 holds. The next example is an illustration of the last remark.

4.3. EXAMPLE. The normed space 1° in Example 4.1 is neither barrelled
nor ultrabarrelled, since the closed absolutely convex absorbing set {(XI ,...,
x n , ... ) E 1°: n Ix n I~ 1 for all n EN} is not a neighbourhood of °in 1°. The
family c9/' of linear continuous functionals An: f ---> K, n EN, given by
AnCx) = nxn , is not equicontinuous in L(l°, K), although Sf = 0.

4.4. Remark. Theorem 3.1 includes the principle of condensation of
singularities not only in the Banach-Steinhaus' form [1 J, but also in the
more general Bourbaki's formulation [3, Chap. III, Sect. 3, Exercise 15J: IfX
is a Baire TVS, Y is a TVS and ~ is a nonequicontinuous set in L(X, Y),
then the set S,f is dense in X and its complement in X is meagre in X.
Indeed, by Theorem 3.1 (ii), S" contains a set S which is dense in X and has
the form S = n {Xn : n EN}, where X n are open sets in X; hence, the sets
Zn =X\(S y UXn) satisfy int Zn = 0 and X\Sy = U {Zn: n EN}.

The following example shows that the principle of condensation of
singularities in Theorem 3.1 (ii), is effectively more general than that of
Bourbaki.

4.5. EXAMPLE. The vector space 1° in Example 4.1, endowed with the
finest locally convex topology on 1°, becomes a Hausdorff barrelled space
(see Proposition 2.1). But 1° is not a Baire space. Indeed, we have 1° = U {Xn :

n EN}, where the sets

X n = {(XI"'" xk,oo.) E f: with xk = °for all k > n}

are closed in f as finitedimensional vector subspaces of 1°. Moreover, X n are
nowhere dense in 1° since, if int Xn= int Xn* 0 for an n EN, then Xn would
be an absorbing set in /0, so for the sequence en + 1 = (0'00.,0,1,0'00') E f
there must exist a A >°such that Aen + I E X n , which is a contradiction.
Consequently, X is not a Baire space.

The family of linear continuous functionals An: f ---> K, a E K, given by
An(x) = ax!' X = (Xi''''' x n , ... ) E f, is not equicontinuous in L(l°, K), so
Theorem 3.1 (ii), applies.
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To the same purpose answers the space of indefinitely derivable functions
in the theory of distributions. This is a Hausdorff barrelled space without
being a Baire space.

5. DOUBLE CONDENSATION OF SINGULARITIES

In this section we establish a principle of double condensation of
singularities for one-parameter families of continuous (not necessarily linear)
mappings between normed spaces. First, we recall a needed lemma whose
proof may be found in [14, p. 103]:

5.1. LEMMA. Let T be a nonvoid complete metric space without isolated
points. Then the intersection of any countable family of open dense sets in T
is superdense in T.

5.2. THEOREM. Let X be a nonzero Banach space, Y a normed space,
and T a nonvoid separable complete metric space without isolated points. Let
also ,y/ = {A i: i E I} be a family of mappings of X X T into Y satisfying the
following conditions:

(a) Ak, t): X --+ Y is continuous, IIAi(x +y, t)11 ~ IIAi(x, t)11 + IIA;(y, t)11
and IIAP"x, t)11 ~ IIA;(x, t)11 for each i E I, t E T, x,y E X and AE K with
1,1,1 ~ 1,

(b) A j(x, .): T --+ Y is continuous for each i E I and x EX,

(c) there exists a dense set To in T such that

sup{IIAj(x, t)11: x E X, Ilxll ~ 1, and i E I} = 00 for all t E To.

Then there exists a superdense set X o in X such that for every x E X o the set
{t E T: sup{IIA;(x, t)11: i E I} = oo} is superdense in T.

Proof Since To is a dense set in the separable metric space T, there
exists a countable subset Tb = {tn: n EN} of To which is dense in T.
Condition (a) implies that the functions fn: X --+ [0, 00], n EN, given by

are lower semicontinuous, and fix +y) ~fn(x)+fn(Y) andfn(Ax) ~fn(x) for
all n E N, x,y E X and A E K with 1,1,1 ~ 1. Condition (c) yields the unboun
dedness of the functions fn on the closed unit ball of X. Then, by a known
result (cf. [6, Theorem 7.5.1]), there exists a subset S of X such that X'\S is
a meagre set in X and fn(x) = 00 for all n E N and all xES. The Baire
theorem ensures that S is a dense set in X.

640/31/2-4
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Now let Xo be the set n {Xn.k: n, kEN}, where X n.k= {x E X:fn(x) > kf.
Since fn are lower semicontinuous and S c Xo, by Lemma 5.1 we conclude
that X o is a superdense set in X. By condition (b), the sets

and

are open in T for all x E X, mEN and i E I.
Let x be an element in X o' We shall show that the sets Tm(x), mEN, are

dense in T. To this end, let t be a point in T and let V be a neighbourhood of
tin T. Since T~ is dense in T, there exists a tn E T~ n V. Sincefn(x) = 00, it
follows that tnE Tm(x) for all mEN, hence tn E Tm(x) n V. Thus, the sets
Tm(x) are dense in T. Using once again Lemma 5.1, we conclude that the set

{t E T: sup{IIAi(x, t)lI: i E I} = oo} = n{Tm(x): mEN}

is superdense in T, and the proof is complete.

5.3. Remark. The next example shows that the density hypothesis in
condition (c) of Theorem 5.2 cannot be dropped. Let X= Y=R, I=N, T=
[0,2] and let Ai: R X [0,2]--+ R be defined by Ai(x, t) = xri. Conditions (a)
and (b) in Theorem 5.2 are fulfilled. The set of all tin [0,2], for which

sup{lxl t i
: Ixl ~ 1, and i EN} = 00,

coincides with the interval ]1, 2], hence the density hypothesis fails. The
conclusion of Theorem 5.2 fails too, since for any superdense set X o in X and
any x in X o we have {t E [0,2]: sup{lxl ti: i EN} = oo} c ]I, 2].

5.4. THEOREM. Let X be a nonzero Banach space, Y a normed space
and ..w' = {Ai: i E I} a family of continuous mappings of X into Y satisfying
the following conditions:

(a) IIAi(x +y)11 ~ IIAi(x)11 + IIAi(y)11 and IIAi(Ax)11 ~ IIAi(x)11 for each
i E I, x, Y E X and AE K with IAI~ 1,

(b) sup {I/A i(x)ll: x EX, Ilxll ~ 1, and i E l} = 00.

Then the set Sw = {x E X: sup{IIAi(x)ll: i E I} = 00 } of singularities for ..w' is
superdense in X.

Proof We use the argument in the first part of the proof of Theorem 5.2,
in which the functions fn are all given by fn(x) =f(x) = sup{IIAi(x)ll: i E l},
and the sets Xn,k are replaced by Xk= {x E X:f(x) > k}, kEN. We obtain
that the set Sw = n {Xk: kEN} is superdense in X.

5.5. EXAMPLE. Let (Un)neN be an unbounded scalar sequence, and let II
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be the Banach space of all summable sequences x = (Xn)neN' endowed with
the norm Ilxll =L~=I Ixnl. We shall show that the set of all sequences (xn ) in
[1, for which L~=llxnunl = 00, is superdense in [I.

To this end we use Theorem 5.4 with X = [I, Y = Rand ..# = {An: n EN},
where the continuous (nonlinear) functionals An: [I -4 R are given by

n

An(x) = 2.: IXkUkl,
k=1

The condition (a) is obviously fulfilled. The condition (b) is implied by

where x~=(O, ... ,O,signun'O,... ). Hence, the set S",= {(Xl' ...,xk,... )E[I:
L~=I IXkUkl = oo} is superdense in [I.

6. DIVERGENCE OF FOURIER SERIES

Let T be the interval [0, I] and ek : T -4 C, k E Z, be the functions defined
by ek(t) = exp(2nikt). A classical theorem asserts that for each continuous
(even measurable with integrable square) function x: T -4 C the associated
Fourier series

(6.1 )

converges to x in the Hilbert space L 2(T). The problem of pointwise
convergence of this series to x was solved in the negative by du Bois
Reymond (1876), who, for each t in T, exhibited a continuous function on T
having its Fourier series divergent at t. Given an x E C(T), denote by UD(x)
the set of all t E T at which the Fourier series of x is unboundedly divergent.
Bari [2, pp. 318-320] constructed a function x E C(T) with the property that
UD(x) is a superdense set in T. Rudin [14, pp. 101-103] showed that the set
of all functions x in C(T) having the last property contains a superdense set
in C(T). We derive Rudin's result as an application of Theorem 5.2.

Given x E C(T), t E T and n E N, we consider the partial sum of series
(6.1 ):

n

An(x, t) = L ckek(t).
k~ - n

(6.2)

6.1. THEOREM (Rudin [14]). There exists a superdense set X o in C(T)
such that for each x E X o the set UD(x) = 1£ E T: sup{IAII(x. t)l:
n E N} = oo} is superdense in T.



148 COBZA~ AND MUNTEAN

as n -400,

Proof In Theorem 5.2 take for X the complex Banach space C(T) with
respect to uniform norm, and for .5!1' the family of linear continuous
functionals A n(-, t): C(T) -4 C, n E N, t E T, defined by (6.2). Since

IIAn(-,t)II=f Isin(2~+ 1)(t-S)n, ds
T sm(t - s)n

J
' Isin(2n+ l)sn I f Isin(2n+ l)snl

= . ds> ds
T sm sn T sn

1 n 1 2k>t

> - \' --f Isin sJ ds
n k'-;;! 2kn (2k- tJ,r

2 n, 1
- \ --400

n2 k:'! k

the condition (c) in Theorem 5.2 is fulfilled with To = T.

6.2. Remark. Theorem 6.1 contrasts with Carleson's famous result
(1966): for each x in L 2(T) the series (6.1) converges to x almost everywhere
on T.

7. DIVERGENCE OF BIORTHOGONAL SYSTEMS

In this section we establish a variant of Theorem 6.1 for general
biorthogonal systems in topological vector spaces [5].

Let X be a TVS and X* its topological dual space. A biorthogonal system
in X is a sequence ((Xj,};))jEN in X X X* such that };(xj ) = OJ.j, i,j EN. A
biorthogonal system ((xj '};)) in X is said to be: (a) X-complete if the vector
space spanned by {x), X 2 , ... } is dense in X. and (b) a Schauder basis for X if
for each x E X we have

00

x= I};(x)x j ,

j=!

the series being convergent in the topology of X. The partial sum operators
sn: X -4 X, n E N, associated with ((xj ,};)), are given by

n

sn(X) = I};(x)x j ,

j=!

xEX.

It is clear that every Schauder basis for X is an X-complete biorthogonal
system in X. The converse is not more true. Of course, using the notations
and results in Section 6, we see that the sequence ((ek.Jk))kEZ' where

x E C(T),
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is a CCT)-complete biorthogonal system in CCT) which is not a Schauder
basis for CCT). Moreover, Theorem 5.4 entails that for each t E T the set of
singularities {x E CCT): sup{lAn(x, t)l: n E N} = oo} is superdense in CCT).
The following theorem is a similar result for general biorthogonal systems.

7.1. THEOREM. Let X be a Hausdorff TVS. Suppose that either X is
ultrabarrelled, or X is barrelled. If «Xi,f;))iEN is an X-complete biorthogonal
system in X which is not a Schauder basis for X, then the set of all x in X
such that the set {sn: n E N} is unbounded in X contains a superdense set in
X.

The proof depends on the following immediate extension of a known
criterion of pointwise convergence in Banach spaces:

7.2. PROPOSITION. Let X and Y be two TVS over the same K and let
An E L(X, Y), n = 0, 1,.... In order that An(x) -+ Ao(x) for all x E X as
n -+ 00 it is sufficient that the following two conditions be fulfilled:

(a) there exists a dense subset X' of X such that An(x' )-+ AO(x' ) for
all x' EX' as n-+ 00,

(b) the set {An: n;;? O} is equicontinuous in L(X, Y).

Conversely, if either X is ultrabarrelled or X is barrelled and Y is a LCS,
then the conditions (a) and (b) are also necessary for A n(x) -+ A o(x) for all
x E X as n -+ 00.

Proof Suppose that the conditions (a) and (b) are fulfilled. Let x E X
and V E ~~y(O). Choose aWE ry(O) such that W + W + We V. By the
equicontinuity of {A n: n ;;? O}, there exists a balanced neighbourhood
U E ~~(O) such that An(U) e W for all n ;;? O. Since the set X' is dense in X,
there is a x' E X' with x - x' E U. Now, An(x' ) -+ Ao(x') as n -+ 00 ensures
the existence of an no EN with An(x' ) -Ao(x') E W for all n;;? no' Thus,

An(x) - Ao(x) = An(x - x') +An(x') - Ao(x')

+Ao(x' -x)EAn(U)+ W+ We V,

hence An(x) -+Ao(x) as n -+ 00.

Let us suppose conversely, that either X is ultrabarrelled or X is barrelled
and Y is a LCS, and that An(x)-+Ao(x) for all xEX as n-+ 00. The
condition (a) is trivially satisfied with X' = X. Since the sequence (An)nEN is
pointwisely convergent, the set {An: n;;? O} is pointwisely bounded in
L(X, Y), hence, by Remark 4.2, the set {An: n;;? O} is equicontinuous in
L(X, Y).



ISO COBZA~ AND MUNTEAN

Proof of Theorem 7.1. Apply the sufficiency part of Proposition 7.2 with
X' =span{xl'x2 , ••• }, An=sn and Ao=the identity operator in X. Then,
since «Xi'!;» is X-complete but it is not a Schauder basis for X, it follows
that the set {sn: n EN} is not equicontinuous in L(X, X). Now, the
conclusion of Theorem 7.1 is a consequence of Theorem 3.1 (ii).

8. DIVERGENCE OF LAGRANGE INTERPOLATION PROCESSES

Let M be a triangular matrix of distinct nodes t~ < ... < t~, n EN, in the
interval T= [-1, 1]. Given a function X in C(T), denote by Ln(x, .) the
Lagrange interpolation polynomial of X over the nodes t~ ,... , t~ in M, defined
by

where

n

Ln(x, t) = ~ x(t~) l~(t),
k=l

tE T, (8.1 )

and Wn(t) = (t - t~) .,. (t - t~).

The problem of convergence of the sequence (Ln(x, .»nEN to x in various
senses has been preoccupying many mathematicians of our century. The first
was Runge (1901); who for equidistant nodes exhibited an analytic function
for which the sequence of Lagrange interpolation polynomials diverges on
some intervals. For equidistant nodes with t~ = -1 and t~ = 1, and for the
function x(t) = Itl, t E T, Bernstein (1916) showed that

sup{ILn(x, t)l: n EN} = 00 (8.2)

on the whole interval T = [-1, 1] except the points -1, 0, 1. In the case of
arbitrary node matrices, Faber (1914) proved the existence of a function x in
C(T) for which the sequence (Ln(x, .»nEN does not converge uniformly to x
on the interval T. Moreover, one of us [9] has showed that for each node
matrix the set {x E C(T): sup{IIL n(x, .)I!c<n: n E N} = oo} is superdense in
C(T).

Theorem 8.1 emphasizes the phenomenon of double condensation of
singularities for Lagrange interpolation processes. Its proof is based on the
following deep result of Erdos [7]: for each node matrix M there exists a
subset·E of T with mes E = 2 such that

for all tEE. (8.3 )



SINGULARITIES AND DIVERGENCE RESULTS 151

8.1. THEOREM. Given a node matrix M, there exists a superdense set X o
in C(T) such that for each x in X o the set {t E T: sup{ILn(x, t)l: n E N} = oo}
is superdense in T.

Proof The functionals L n(·, t): C(T) -> R, t E T, defined by (8.1), are
linear and continuous and their norm is given by

n

liLA·, 01\ = L Il~(t)l,
k=1

n EN, tE T.

Now, taking into account of (8.3), Theorem 5.2 applies with X = C(T),
Y=R, I=N, T= [-1, 1], An(x, t)=Ln(x, t) and To=E.

8.2. Remarks. Pilipcuk [10] has proved that, given an arbitrary node
matrix M, there exists a subset E of T with mes E = 2 such that for each
tEE one can find a function x in C(T) satisfying both (8.2) and the
supplementary conditions x(t) = 0 and 5T Ix(s)/(s - t)\ ds < 00. When the
nodes in M are the roots of Jacobi polynomials p~a,{j) with min{a, p} > -1,
Privalov [12] has showed that there exists a function x in C(T) satisfying
(8.2) almost everywhere on T, and recently Pilipcuk [11] has exhibited a
function x in C(T) with preassigned modulus of continuity such that the set
{t E T: sup{ILn(x, t)l: n E N} = oo} is superdense in T. Moreover, in the case
of Cebysev nodes (a=p=-1/2) Grunwald (1936) and Marcinkiewicz
(1937) constructed a continuous function for which (8.2) holds everywhere
on T.

In contrast with the preceding divergence results, Erdos and Tunin (1937)
proved that for each node matrix M and each x in C(T) the sequence
(Ln(x, . ))nEN converges to x in the Hilbert space L 2(T).

9. DIVERGENCE OF SOME QUADRATURE FORMULAS

Let (mn)nEN be a sequence of natural numbers, c~, c~, ... , c;n a matrix of
real coefficients, and -1 ::;;; t~ < t~ < '" < t;n::;;; 1 a matrix of nodes in the
interval T= [-1, 1]. We present some conditions on the coefficients or on
the nodes which entail the unbounded divergence of quadrature formulas

where

Jx(t) dt = Qn(x) + Rn(x),
T

m"

Qn(x) = L c~x(t~).
k=O

x E C(T), (9.1 )

(9.2)
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9.1. THEOREM. Suppose that one of the following conditions is fulfilled:

or

(c z) mn= n, the nodes t~, k = 0, 1,... , n, are the roots of Jacobi
polynomial P~"t~) with max {a, p} > 3/2, and Rn(p) = 0 for any polynomial p
of degree ~n. Then the set {x E C(T): sup{1 Qn(x)l: n EN} = oo} is super
dense in C(T).

Proof It is easy to see that the functionals Qn: C(T) -+ R defined by
(9.2) are linear and continuous on the real Banach space C(T), and that their
norm is given by m.

II Qnll = L Ic~l, n E N. (9.3)
k=O

Theorem 3.1 (iv) (or Theorem 5.4) applies whenever we are convinced of

sup{11 Qn II: n E N} = 00. (9.4)

If condition (c l ) is fulfilled, then (9.3) implies (9.4). If condition (c z)
holds, Locher [8] proved that there exists a constant c >0 such that

n

IIR
n
ll=2+ L Ic~l~c.nmaX(n,IlI-3/z

k=O

for all sufficiently large n EN. Hence II Qn II ~ -2 +c . nmaXla,lll- 3/Z and so
(9.4) is satisfied.

9.2. Remark. Suppose that Qn in (9.1) is given by

Qn(x) = f Ln(x, t) dt,
T

x E C(T),

where Ln(x,·) is the Lagrange interpolation polynomial of x over the
equidistant nodes t~ = -1 + k/n, k = 0, 1,... , 2n. Brass [4] showed that
(-lYQnCx)-+oo as n-+oo for the function x(t)=ltl, tET, which
immediately entails condition (c l ) of Theorem 9.1. Therefore, the set of all
functions x in C(T), for which the Newton-Cotes quadrature formula

diverges unboundedly, is superdense in C(T).
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